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A TABLE OF TOTALLY REAL QUINTIC NUMBER FIELDS 

F. DIAZ Y DIAZ 

ABSTRACT. We give a table of the 1077 totally real number fields of degree five 
having a discriminant less than 2 000 000. There are two nonisomorphic fields of 
discriminant 1 810 969 and two nonisomorphic fields of discriminant 1 891 377. 
All the other number fields in the table are characterized by their discriminant. 
Among these fields, three are cyclic and four have a Galois closure whose Galois 
group is the dihedral group D5 . The Galois closure for all the other fields in 
the table has a Galois group isomorphic to S5 . 

1. INTRODUCTION 

A systematic study of 5th-degree number fields was done by H. Cohn in [4]; 
in that paper he gave a list of small discriminants for each of the three possible 
signatures, and he made the conjecture that these tables are complete in the 
ranges covered by the given values. In [3] P. Cartier and Y. Roy proved that the 
different polynomials of [4] having the same discriminant generate isomorphic 
number fields. 

Some years later, J. Hunter [5], using methods of the geometry of numbers, 
determined the minimal discriminants for the three signatures of the number 
fields of degree five. They are: 1 649 for the signature (1 , 2), -4 51 1 for the 
signature (3, 1), and 14641 for the totally real quintics. He also enlarged the 
conjectural tables constructed by H. Cohn. 

More recently, D. G. Rish [10] gave complete tables for quintics having one 
or three real places. Unfortunately, the author does not give proofs of the 
inequalities used, and these inequalities seem to have been obtained in a manner 
analogous to that used by J. Liang and H. Zassenhaus in [7] that are known to 
be incorrect (cf. [9]). 

For the totally real quintics K. Takeuchi [11] found all the number fields of 
discriminants smaller than 150 000, and his list confirms the conjectural results 
in [4, 5] for that signature. It should be pointed out, however, that K. Takeuchi's 
table of totally real number fields of degree five contains two errors to which J. 
Martinet has drawn my attention: the polynomials X5+2X4-6X3-4X2+5X- 1 
of discriminant 107 653 and X5 - 8X3 - 2x2 + 3X + 1 of discriminant 146 205 
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do not generate quintic number fields because they are reducible: the first one is 
divisible by X2+3X- 1 and the second by X2+3X+ 1 . Our computations show 
that the table of K. Takeuchi is correct if we eliminate these two discriminants. 

The table given in the Supplement section contains the complete list of the 
1077 totally real number fields of degree five of discriminant smaller than 
2000000. For the computation of the table we used the techniques of the 
geometry of numbers, and we will give a brief description of them in the next 
section. These methods have already been used by different authors in the con- 
struction of extensive tables of number fields [1, 2]. 

In ?3 we describe the simplifications used to reduce as much as possible the 
number of polynomials to be considered. We also explain what tests are used 
for the determination of the signature of the fields, the irreducibility of the 
polynomials, and the exact value of the discriminant of the fields. 

In ?4 we show how we found the possible existence of isomorphisms among 
the number fields generated by the roots of the different polynomials having the 
same discriminant. Thus, we prove the existence of two nonisomorphic fields of 
discriminant 1 810 969 and two nonisomorphic fields of discriminant 1 891 377. 
All the other fields in the table are characterized by their discriminant. 

Finally, in ? 5, we study the Galois group of the Galois closure of each number 
field in the table. We then prove that in the range of the table there exist exactly 
three abelian number fields and four number fields for which the Galois group of 
the Galois closure is the dihedral group D5. All the other number fields in the 
table have a Galois closure having a Galois group isomorphic to the symmetric 
group S5. 

All the computations were done on the UNIVAC 1 1 10 at the University of 
Paris XI. 

We wish to thank J. Martinet for his suggestions and help in verifying that 
the table was complete. 

2. THE METHOD 

Let K be a totally real number field of degree 5 having a discriminant dK < 
2 000 000, and let ZK denote its ring of integers. We know that K is always a 
primitive extension of Q generated by a root 0 of an irreducible polynomial 
P(X) = X5 + a1X4 + a2X3 + a3X2 + a4X + a5 E Z[X] having only real roots. 

We will also use Newton's relations 

k-i 
(1) Sk+ k * ak+Eai.Sk-=i = 0 

i=1 

valid for all k E N if we define ak = 0 for k > 5 and where the Sk denote 
the kth power sums, 

Sk = Sk(O) = TrK/Q(O )k 
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If we fix an order for the roots of the polynomial P(X) = 15= (X - 0i) we 
can obtain an embedding of K in R5 by using the map 

K R 5, 

0 (01 I S 05)~ 

and under this map ZK becomes a lattice M of R5 of discriminant d K ~~~~~~~~~K 
The map 

ZK-+ R, 

q 
5 

0 ' ) ESi2 

i=l 

is a positive definite quadratic form. The restriction of q to the sublattice M', 
the image by T of the ring Z[O], is still a positive definite quadratic form whose 
matrix relative to the basis {l, 0, ... , 064} is 

( 5 81 82 S3 84 

SI 82 83 84 85 
82 83 84 85 86 
83 84 85 86 87 

84 85 86 87 58 

and has determinant d(6) = f2 dK, where f is the index of the ring Z[6] in 
ZK . 

Our computations are based upon the following fundamental result: 

Theorem 1 (Hunter [5], Pohst [9], Martinet [8]). There exists an algebraic integer 
0 E K, H Q, such that 

(2) 0 < TrK/Q(O) 2, 

(3) 6 < TrK/Q(62) < - 5 35.566 

For each value of 82 in the range defined by inequalities (3) we have: 

Lemma 1. The polynomial P(X) for which 0 is a root satisfies 
25 

(4) Ia5I = IP(M)I < (82/15) 5 

(5) IP(l)I ? (82- 281 + 5)2.5 

(6) IP(-I)l < (82 +281+52.5 

This follows from the inequalities between arithmetic and geometric means. 
Conditions (2)-(6) suffice to construct all the polynomials where a root gen- 

erates each one of the fields K under consideration; however, in order to min- 
imize the number of polynomials to be considered, we will try to find, in a 
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different way, more inequalities for the coefficients of P(X) and for the sym- 
metric functions Sk for k = 3, 4. Let us fix the value of a5; if we write 
N= Ia5j (0 O) and T=S2 we have: 

Theorem 2 (Pohst [9]). Let yt denote the smallest positive root of the equation 

t@( 5N) +(5_t)x *X= T, t=1,2, 3, 4, 

and 

N m/t+(t) } max l t 5-t (5-t) for m =-1, 3, 4. TM 1<t<4 /- y 

Then we have the inequalities 

(7) -Ia5IT1, < a4 < la1IT71, 
(8) -T3 < S3 < T3, 
(9) 0 < S4 < T4. 

Moreover, the coefficients of P(X) satisfy Newton's inequalities because the 
roots of this polynomial are real: 

(10) 2a1a3 a2, 

(1 1) 2a2a4 < a3, 

(12) 5a3a, < 2a . 

We should also bear in mind the fact that the second derivative of P(X) has 
three real roots and, consequently, a positive discriminant. Following [5], we 
obtain the inequality 

(13) 125a3 - 15a1a2 + 4a, I < 2(2a, - 5a2)3. 

The lower bound in inequality (9) can be improved if we consider the lattice M' 
and the restriction of the quadratic form q to the submodules containing points 
of M', where at least one of their coordinates in the basis { 1, 0, 02, 03, 04} is 
zero. These restrictions are also positive definite quadratic forms and therefore 
have a positive determinant. A first rough estimate is obtained by the inequality 

(14) S2 S34>0 

and a stronger lower bound is obtained by 

5 S1 S2 
(15) S1 S2 S3 > . 

S2 S3 S4 
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3. THE COMPUTATIONS 

We begin by fixing the (integer) value of S2 in the range (3), and we consider 
the values of S1 in the interval (2) having the same parity as that of S2 be- 
cause, according to the relations (1), the residue class (mod k) of Sk is entirely 
determined by the residue class (modk) of S1, . .. , Sk_j for k = 2, 3, 4, 5. 

We first determine the coefficients a and a2 of P(X), and then we compute 
D' = 1.25(S2 - a 2/5)4. According to Theorem 1 we know that all the number 
fields K of discriminant dK < D' have already been found for values of S2 
smaller than those we are now considering. The computation of D' allows 
us to restrict our research to the values of the discriminant dK in the range 
D' < dK < 2 000 000, which becomes narrower when the value of S2 is crossed. 
The search for the inessential factors of the discriminant of the polynomial is 
then made easier. 

Next we consider the intervals obtained for a,, P( 1) and P(- 1), using 
inequalities (4)-(6). In the special case where a =0 we can take a > 0; the 
value of a5 being fixed, we use Theorem 2 to determine T I, T3, and T74. 

We then choose the values for S3 in IS31 < T3 with T3 = min(73, /7) 

because, according to inequality (14), we must have S2 < S2S4. We can now 
compute the value of a3, which must satisfy inequalities (10) and (13). 

Inequality (15) gives us a lower bound T4 for S4, and we take S4 in the 
interval [T4, T4] which is sometimes empty. This allows us to compute the last 
coefficient a4 which is still unknown. We then use inequalities (7), (11), (12), 
(5), and (6) in that'order. For the polynomials whose coefficients and power 
sums satisfy inequalities (1)-( 15), we determine the number of real roots, using 
Sturm's Theorem, and when all the roots are real, we compute them with an 
accuracy of less than, 10-1 . 

To test whether or not P(X) is reducible, we first consider the polynomial 
obtained from P(X) by reduction (mod 2) of their coefficients, and we com- 
pare it with the complete list of irreducible polynomials of degree five in F2[X]. 
When the reduced polynomial appears in this list, we know that P(X) 'is irre- 
ducible in Z[X] and the test is finished. Otherwise, we use the roots to verify 
if there exist divisors of degree 1 or 2 of P(X). Let us suppose that P(X) is 
irreducible; then we compute an approximate value of its discriminant, using 
the formula dp = H15 , P'(0i), and its exact value in the finite'fields F100003 
and F 100019 The Chinese Remainder Theorem suffices to determine the exact 
value of dK. 

Next we try to decompose dp in the form dp = f dK with D' < dK < 

2000000, and when this is possible, we consider the different prime divisors 
of f to decide whether or not they are inessential divisors of the discriminant. 
This can be done using Dedekind's Criterium (cf. [9]). If p is a prime which 
divides f and appears in the decomposition in primes of dp at a high power, 
we construct a basis of integers of K to determine the exact power of p divid- 
ing dK. 
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4. ISOMORPHIC FIELDS 

In spite of the fact that the use of the lower bound D' reduces the number 
of polynomials generating number fields of the same discriminant, we usually 
obtain several polynomials for each discriminant. To decide whether or not two 
such polynomials correspond to isomorphic fields, we proceed in the following 
way: we fix a polynomial, among those having the same discriminant, for which 
the index f is as small as possible (this is the polynomial which appears in the 
table), and we fix an order for its roots A, 6..., 0, For each one of the other 
polynomials having the same value of dK (designated in the sequel by P'(X) 
with roots Al, ..., 6'), we successively consider the products 

5 

S1 (a) = a 6i6c(i)' 

i=l 

where a describes all the permutations in five elements. 
Considering the permutation a, when we find a value of s, (a) near an 

integer, we compute the products 
5 

sk =s k()=LE OI (i) for k = 2, 3, 4, 
i=l 

and if s2 s3, and s4 are also near integers, we try to solve the system 

f 5 SI S2 S3 S4 xO so 
SI S2 S3 S4 S5 x1 Si1 

(16) S2 S3 S4 S5 S6 X2 = 52 

S3 S4 S5 S6 S7 X3 S3 
S4 S5 S6 S7 S8) (x4, S4 

where s0= S1(0') . 
If f. xi is near an integer for 0 < i < 4, we verify that the polynomial with 

roots equal to 

6; = x +xl x+ x2 + x303+ x46i for i = 1, ...,5 

is exactly P'(X). 
Thus, we obtain the following theorem. 

Theorem 3. Within the range covered by the table there exist two nonisomorphic 
fields of discriminant 1 810 969 and two nonisomorphic fields of discriminant 
1 891 377. All the other fields in the table are characterized by their discriminant. 
Proof. In only two cases did the system (16) lack a solution (xo, xl, X2 , x3, X4) 
with f. xi integer for i = 0, ... , 4: this was the case for the polynomials 
P1(X) = X5 - 4X4 - 7X3 + 7X2 + 6X- 5 with P1(0) = 0 and P1(X) = 

5 4 3 +92 X - 2X - 8X + 9X + 16X - 7 with Pi(6') = 0 of discriminant 1 810969 
as well as for the polynomials P2(X) = XI _ X4 - 7X3 + 6X2 + 9X - 6 with 
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P2(u) = O and P (X) = X5 - 2X4 - 9X3 + 8X2 + 26X + 9 with P 0u')=O of 
discriminant 1 891 377 = 33 70051. 

To prove that the fields K = Q(6) and K' = Q(6') are nonisomorphic, we 
consider the decomposition of the ideal (3) in these two fields; we have: 

(3) remains prime in K, 
(3) = P P in K, where = (3, 0+ 1), p = (3, 0'- 1), and 

P3 = (3, 0'3+02 +206+ 1). 
The fields K1 = Q(,u) and K' = Q(,u') are not isomorphic either because we 

have 
(3) = 13 12 in K,, where p =(3, u) and 2 =(3, u + 2,+2), 

and 
(3)= * * in K', where p = (3,,u'), p4 = (3,u' + 1), and 

5. GALOIS GROUPS 

Theorem 4. Thefields ofdiscriminant 14 641 = 11 4, 390 625 = 58, and 923 521 
= 314 are cyclic. 

These fields are well known. 

Remarks. 1. The field of discriminant 14 641 is generated by a root 0 of the 
polynomial X5 - 4 - 4X3 + 3X2 + 3X- 1. It can easily be verified that the 
otherroots are -02+2, 6-030 _64+440 2, and 04 063 036 2++1. 

2. The field of discriminant 390 625 is generated by a root 0 of the polyno- 
mial X5 - lOx3 + 5X2 + lOX + 1 and the other roots are 

(-204 + 03 + 2302 180 - 25)/7, (404 - 203 - 3902 + 360 + 22)/7, 

(04 + 303 - 8602 190 + 9)/7, (3604 - 203 + 2402 - 60 - 6)/7. 

3. The field of discriminant 923 521 is generated by a root 0 of the polyno- 
mial X5 - X4 - 12X3 + 21X2 + X - 5 and the other roots are 

(204 03 - 2202 + 310)/5, (204 + 403 _ 1702 _ 140 + 10)/5, 

(3064 _ 3+ 3302- 240 - 15)/5, (-64 - 203 + 602 + 20 + 10)/5. 

Theorem 5. The Galois group of the Galois closure of the fields of discriminant 
160 801 = 4012, 667 489 = 192 .432, 1 194 649 = 1 0932, and 1 940 449 = 

2 2 7 .199 is the dihedral group Ds. 

It can easily be verified that the quadratic fields Q(vf401), Q(vWi7), 
Q(V193), and Q(V'19~) have class number equal to 5. 

Theorem 6. The Galois group of the Galois closure of the totally real quintic 
number fields of discriminant less than 2000000 not indicated in Theorems 4 
and 5 above is the symmetric group S5 . 
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Proof. We know from [8] that the minimal discriminant for the totally real 
quintics whose Galois closure has a Galois group isomorphic to the affine group 
Aff5 is 2 382032 and out of the range of the table. The discriminant of the 
number fields having a Galois closure with Galois group isomorphic to A, is a 
square, but there are only seven perfect squares among the discriminants in the 
table and their group has been established in Theorems 4 and 5. This proves 
our theorem. o 

Remark. The minimal discriminant for the totally real quintics whose Galois 
group of its Galois closure is the group A, seems to be the field of discriminant 

2 2 5 4 3 3 104644 = 2 *881 generated by a root of the polynomial X -X - 1X + 
2 X + 12X -4. 
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